Fold recognition by concurrent use of solvent accessibility and residue depth.
نویسندگان
چکیده
Recognizing the structural similarity without significant sequence identity (called fold recognition) is the key for bridging the gap between the number of known protein sequences and the number of structures solved. Previously, we developed a fold-recognition method called SP(3) which combines sequence-derived sequence profiles, secondary-structure profiles and residue-depth dependent, structure-derived sequence profiles. The use of residue-depth-dependent profiles makes SP(3) one of the best automatic predictors in CASP 6. Because residue depth (RD) and solvent accessible surface area (solvent accessibility) are complementary in describing the exposure of a residue to solvent, we test whether or not incorporation of solvent-accessibility profiles into SP(3) could further increase the accuracy of fold recognition. The resulting method, called SP(4), was tested in SALIGN benchmark for alignment accuracy and Lindahl, LiveBench 8 and CASP7 blind prediction for fold recognition sensitivity and model-structure accuracy. For remote homologs, SP(4) is found to consistently improve over SP(3) in the accuracy of sequence alignment and predicted structural models as well as in the sensitivity of fold recognition. Our result suggests that RD and solvent accessibility can be used concurrently for improving the accuracy and sensitivity of fold recognition. The SP(4) server and its local usage package are available on http://sparks.informatics.iupui.edu/SP4.
منابع مشابه
Prediction of structural features and application to outer membrane protein identification
Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the ass...
متن کاملSupport Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs
MOTIVATION Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. RESULTS We have dev...
متن کاملProtein fold recognition by prediction-based threading.
In fold recognition by threading one takes the amino acid sequence of a protein and evaluates how well it fits into one of the known three-dimensional (3D) protein structures. The quality of sequence-structure fit is typically evaluated using inter-residue potentials of mean force or other statistical parameters. Here, we present an alternative approach to evaluating sequence-structure fitness....
متن کاملPredicting Protein Solvent Accessibility with Sequence, Evolutionary Information and Context-based Features
Solvent-accessible surface areas of residues in proteins are key factors in protein folding. Predicting solvent accessibility from protein sequences is significant for modeling the structural and functional characteristics of many proteins. In this work, we introduce an approach of enhancing solvent accessibility prediction accuracy. We derive pseudo-potentials, by considering high-orderinter-r...
متن کاملImproving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method emp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2007